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Check your understanding
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How should we pick K then?

§ The “Elbow rule”
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Intuition: Local Minima, simple example
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How do we evaluate?
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What makes one of these better than the other?
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Two sets of evaluation metrics
§ When the clusters are known

§ Can use the standard approaches, e.g. precision/recall (how?)
§ PA4!

§ Can use a variety of metrics
§ Mutual information-based scores
§ Entropy-based scores
§ …

§ But we usually cluster when we don’t know the labels!!

6

b



@_kenny_joseph

Two sets of evaluation metrics

§When the clusters are known
§ Can use the standard approaches, e.g. precision/recall (how?)

§ PA4!
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How do we evaluate?
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What makes one of these better than the other?
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Evaluation (con’t)
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5 minutes: Come up with an evaluation metric
that you could use to quantify your intuition. 

Give me a number, and how you computed it!
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One Evaluation Metric – Silhouette Score
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One Evaluation Metric – Silhouette Score
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Code Demo
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Kmeans Drawbacks: Difficulties w/ high 
dimensional data 
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§ Full details: Section 3.5, CIML
§ Intuition: 

§ In high dimensions, distances start to become “more equal” (the 
variance of the distribution of distances across all points 
converges to a single number)

§ That’s bad, because all kmeans does is work with distances 
between centers and points!

§ Luckily, it’s not all that bad, because points are not distributed 
uniformly, 
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More Drawbacks to K-means
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A different approach: (Gaussian) mixture 
modeling
§Details in notebook...
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