Clustering

Kenneth (Kenny) Joseph

Check your understanding

University at Buffalo

Consider trying k-means with different values of k. Which of the following graphs shows how the globally optimal heterogeneity changes for each value of k?

How should we pick K then?

The "Elbow rule"

Intuition: Local Minima, simple example

How do we evaluate?

ed Sciences

What makes one of these better than the other?

@_kenny_joseph

Two sets of evaluation metrics

- When the clusters are known
- Can use the standard approaches, e.g. precision/recall (how?)
 - PA4!

But we usually cluster when we don't know the labels!!

Two sets of evaluation metrics

When the clusters are known

and Engineering

Can use the standard approaches, e.g. precision/recall (how?)

How do we evaluate?

What makes one of these better than the other?

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

Evaluation (con't)

5 minutes: Come up with an evaluation *metric* that you could use to *quantify* your intuition. Give me a number, and how you computed it!

@ kennv iose

One Evaluation Metric – Silhouette Score

• **a**: The mean distance between a sample and all other points in the same class.

b: The mean distance between a sample and all other points in the next nearest cluster.

The Silhouette Coefficient s for a single sample is then given as:

is defined
(
$$s = \frac{b-a}{max(a,b)}$$

(single point!, for dataset, just toke average.

@ kenny jose

One Evaluation Metric – Silhouette Score

• b: The mean distance between a sample and all other points in the next nearest cluster.

The Silhouette Coefficient s for a single sample is then given as:

and Engineering

hool of Engineering and Applied Sciences

Code Demo

0

@_kenny_joseph

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

Kmeans Drawbacks: Difficulties w/ high <u>dimensional data</u>

- Full details: Section 3.5, CIML
- Intuition:
 - In high dimensions, distances start to become "more equal" (the variance of the distribution of distances across all points converges to a single number)
 - That's bad, because all kmeans does is work with distances between centers and points!
 - Luckily, it's not all that bad, because points are not distributed uniformly,

More Drawbacks to K-means

disparate cluster sizes

different shaped/oriented clusters

A different approach: (Gaussian) mixture modeling

Details in notebook...

University at Buffalo Department of Computer Science and Engineering School of Engineering and Applied Sciences

