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Check your understanding

Consider trying k-means with different values of k. Which of the
following graphs shows how the globally optimal heterogeneity
changes for each value of k?
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How should we pick K then?

= The “Elbow rule”
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Intuition: Local Minima, simple example
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How do we evaluate?

What makes one of these better than the other?
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Two sets of evaluation metrics

When the clusters are known
Can use the standard dpprodches, e.g. precision/recall (how?)

"« Can use a variety of metrics
@ Mutual information-based scores
l Entropy-based scores

But we usually cluster when we don’t know the labels!!
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Two sets of evaluation metrics

= When the clusters are known

= Can use the standard approaches, e.9. precision/recall (how?)
= PA4!
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How do we evaluate?

What makes one of these better than the other?
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Evaluation (con’t)

O

5 minutes: Come up with an evaluation metric
that you could use to quantify your intuition.
Give me a number, and how you computed it!
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One Evaluation Metric - Silhouette Score

@a: The mean distance between a sample and all other points in the same class.
* b: The mean distance between a sample and all other points in the next nearest cluster.

The Silhouette Coefficient s for a single sample is then given as:
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One Evaluation Metric - Silhouette Score

* a: The mean distance between a sample and all other points in the same class.
« b: TAe mean distance between a sample and all other points in the next nearest cluster.

he Silhouette Coefficient s for a single sample is then given as:
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Kmeans Drawbacks: Ditticulties w/ high @
dimensional data

O

Full details: Section 3.5, CIML

Intuition:

In high dimensions, distances start to become “more equal” (the
variance of the distribution of distances across all points
converges to a single number)

That's bad, because all kmeans does is work with distances
between centers and points!

Luckily, it's not all that bad, because points are not distributed
uniformly,
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More Drawbacks to K-means

% @ o

disparate cluster sizes overlapping clusters different

shaped/oriented
clusters
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A ditferent approach: (Gaussian) mixture
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= Details in notebook...
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kmeans_clust, cluster
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